Automatic Deployment of Convolutional Neural Networks on FPGA for Spaceborne Remote Sensing Application

نویسندگان

چکیده

In recent years, convolutional neural network (CNN)-based algorithms have been widely used in remote sensing image processing and show tremendous performance a variety of application fields. However, large amounts data intensive computations make the deployment CNN-based challenging problem, especially for spaceborne scenario where resources power consumption are limited. To tackle this paper proposes an automatic CNN solution on resource-limited field-programmable gate arrays (FPGAs) applications. Firstly, series hardware-oriented optimization methods proposed to reduce complexity CNNs. Secondly, hardware accelerator is designed. accelerator, reconfigurable engine array with efficient computation architecture accelerate algorithms. Thirdly, bridge optimized CNNs compilation toolchain introduced into solution. Through conversion from models instructions, various networks can be deployed real-time. Finally, we improved VGG16 YOLOv2 Xilinx AC701 evaluate effectiveness The experiments that only 3.407 W 94 DSP consumption, our achieves 23.06 giga operations per second (GOPS) throughput 22.17 GOPS YOLOv2. Compared related works, efficiency by 1.3–2.7×.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Deep Sensing: Cooperative Spectrum Sensing Based on Convolutional Neural Networks

In this paper, we investigate cooperative spectrum sensing (CSS) in a cognitive radio network (CRN) where multiple secondary users (SUs) cooperate in order to detect a primary user (PU) which possibly occupies multiple bands simultaneously. Deep sensing, which constitutes the first CSS framework based on a convolutional neural network (CNN), is proposed. In deep sensing, instead of the explicit...

متن کامل

Spaceborne Radar Technologies for Earth Remote Sensing

Synthetic Aperture Radar (SAR) is an indispensable source of information in earth observation since SAR is the only spaceborne sensor that has highresolution, all-weather and day-and-night imaging capability. Within the next 10 years more than 20 spaceborne SAR systems from different nations will be launched. Increased demand for larger swath width and higher geometric resolution poses contract...

متن کامل

Spaceborne Imaging Radars for Earth’s Remote Sensing

Spaceborne synthetic aperture radars (SARS) generate high resolution, wide-swath coverage maps of the surface which resembie aeriai photographs. Since SARS are active, microwave instruments, they can operate in day and night situations and are neariy independent of cioud and weather conditions. in the past two decades, SAR imagery had been appiied to numerous Earth’s remote sensing studies. Thi...

متن کامل

FPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing

This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14133130